Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
arxiv; 2021.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2107.08586v1

ABSTRACT

Precise and high-resolution carbon dioxide (CO2) emission data is of great importance of achieving the carbon neutrality around the world. Here we present for the first time the near-real-time Global Gridded Daily CO2 Emission Datasets (called GRACED) from fossil fuel and cement production with a global spatial-resolution of 0.1{\deg} by 0.1{\deg} and a temporal-resolution of 1-day. Gridded fossil emissions are computed for different sectors based on the daily national CO2 emissions from near real time dataset (Carbon Monitor), the spatial patterns of point source emission dataset Global Carbon Grid (GID), Emission Database for Global Atmospheric Research (EDGAR) and spatiotemporal patters of satellite nitrogen dioxide (NO2) retrievals. Our study on the global CO2 emissions responds to the growing and urgent need for high-quality, fine-grained near-real-time CO2 emissions estimates to support global emissions monitoring across various spatial scales. We show the spatial patterns of emission changes for power, industry, residential consumption, ground transportation, domestic and international aviation, and international shipping sectors between 2019 and 2020. This help us to give insights on the relative contributions of various sectors and provides a fast and fine-grained overview of where and when fossil CO2 emissions have decreased and rebounded in response to emergencies (e.g. COVID-19) and other disturbances of human activities than any previously published dataset. As the world recovers from the pandemic and decarbonizes its energy systems, regular updates of this dataset will allow policymakers to more closely monitor the effectiveness of climate and energy policies and quickly adapt


Subject(s)
COVID-19
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.08196v1

ABSTRACT

Changes in CO$_2$ emissions during the COVID-19 pandemic have been estimated from indicators on activities like transportation and electricity generation. Here, we instead use satellite observations together with bottom-up information to track the daily dynamics of CO$_2$ emissions during the pandemic. Unlike activity data, our observation-based analysis can be independently evaluated and can provide more detailed insights into spatially-explicit changes. Specifically, we use TROPOMI observations of NO$_2$ to deduce ten-day moving averages of NO$_x$ and CO$_2$ emissions over China, differentiating emissions by sector and province. Between January and April 2020, China's CO$_2$ emissions fell by 11.5% compared to the same period in 2019, but emissions have since rebounded to pre-pandemic levels owing to the fast economic recovery in provinces where industrial activity is concentrated.


Subject(s)
COVID-19
3.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2006.07690v1

ABSTRACT

We constructed a near-real-time daily CO2 emission dataset, namely the Carbon Monitor, to monitor the variations of CO2 emissions from fossil fuel combustion and cement production since January 1st 2019 at national level with near-global coverage on a daily basis, with the potential to be frequently updated. Daily CO2 emissions are estimated from a diverse range of activity data, including: hourly to daily electrical power generation data of 29 countries, monthly production data and production indices of industry processes of 62 countries/regions, daily mobility data and mobility indices of road transportation of 416 cities worldwide. Individual flight location data and monthly data were utilised for aviation and maritime transportation sectors estimates. In addition, monthly fuel consumption data that corrected for daily air temperature of 206 countries were used for estimating the emissions from commercial and residential buildings. This Carbon Monitor dataset manifests the dynamic nature of CO2 emissions through daily, weekly and seasonal variations as influenced by workdays and holidays, as well as the unfolding impacts of the COVID-19 pandemic. The Carbon Monitor near-real-time CO2 emission dataset shows a 7.8% decline of CO2 emission globally from Jan 1st to Apr 30th in 2020 when compared with the same period in 2019, and detects a re-growth of CO2 emissions by late April which are mainly attributed to the recovery of economy activities in China and partial easing of lockdowns in other countries. Further, this daily updated CO2 emission dataset could offer a range of opportunities for related scientific research and policy making.


Subject(s)
COVID-19
4.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2004.13614v3

ABSTRACT

The considerable cessation of human activities during the COVID-19 pandemic has affected global energy use and CO2 emissions. Here we show the unprecedented decrease in global fossil CO2 emissions from January to April 2020 was of 7.8% (938 Mt CO2 with a +6.8% of 2-{\sigma} uncertainty) when compared with the period last year. In addition other emerging estimates of COVID impacts based on monthly energy supply or estimated parameters, this study contributes to another step that constructed the near-real-time daily CO2 emission inventories based on activity from power generation (for 29 countries), industry (for 73 countries), road transportation (for 406 cities), aviation and maritime transportation and commercial and residential sectors emissions (for 206 countries). The estimates distinguished the decline of CO2 due to COVID-19 from the daily, weekly and seasonal variations as well as the holiday events. The COVID-related decreases in CO2 emissions in road transportation (340.4 Mt CO2, -15.5%), power (292.5 Mt CO2, -6.4% compared to 2019), industry (136.2 Mt CO2, -4.4%), aviation (92.8 Mt CO2, -28.9%), residential (43.4 Mt CO2, -2.7%), and international shipping (35.9Mt CO2, -15%). Regionally, decreases in China were the largest and earliest (234.5 Mt CO2,-6.9%), followed by Europe (EU-27 & UK) (138.3 Mt CO2, -12.0%) and the U.S. (162.4 Mt CO2, -9.5%). The declines of CO2 are consistent with regional nitrogen oxides concentrations observed by satellites and ground-based networks, but the calculated signal of emissions decreases (about 1Gt CO2) will have little impacts (less than 0.13ppm by April 30, 2020) on the overserved global CO2 concertation. However, with observed fast CO2 recovery in China and partial re-opening globally, our findings suggest the longer-term effects on CO2 emissions are unknown and should be carefully monitored using multiple measures.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL